欧美成人aaa大片_再深点灬舒服灬太大了添视频_日韩电影一区二区三区_国内精品周妍希在线播放


四北電子公司介紹如何設計高效小型化開關電源

開關電源是利用現代電力電子技術,控制開關晶體管開通和關斷的時間比率,維持穩定輸出電壓的一種電源。從上世紀90年代以來開關電源相繼進入各種電子、電器設備領域,計算機、程控交換機、通訊、電子檢測設備電源、控制設備電源等都已廣泛地使用了開關電源。隨著電源技術的發展,低電壓,大電流的開關電源因其技術含量高,應用廣,越來越受到人們重視。在開關電源中,正激和反激式有著電路拓撲簡單,輸入輸出電氣隔離等優點,廣泛應用于中小功率電源變換場合。跟反激式相比,正激式變換器變壓器銅損較低,同時,正激式電路副邊紋波電壓電流衰減比反激式明顯,因此,一般認為正激式變換器適用在低壓,大電流,功率較大的場合。  


2 基本技術  


2.1 有源鉗位技術  


正激DC/DC變換器其固有缺點是功率晶體管截止期間高頻變壓器必須磁復位。以防變壓器鐵心飽和,因此必須采用專門的磁復位電路。通常采用的復位方式有三種,即傳統的附加繞組法、RCD鉗位法、有源鉗位法。三種方法各有優缺點:磁復位繞組法正激變換器的優點是技術成熟可靠,磁化能量可無損地回饋到直流電路中去,可是附加的磁復位繞組使變壓器結構復雜化,變壓器漏感引起的關斷電壓尖峰需要RC緩沖電路來抑制,占空比D<0.5,功率開關管承受的電壓應力與輸入電源電壓成正比。RCD鉗位正激變換器的優點是磁復位電路簡單,占空比D可以大于0.5,功率開關管承受電壓應力較低,但大部分磁化能量消耗在鉗位電阻中,因此它一般適用于變換效率不高且價廉的電源變換場合。有源鉗位技術是三種技術中效率最高的技術,它的電路圖如圖1所示,工作原理如圖2所示。在 DT時段之前,開關管S1導通,激磁電流iM為負,即從Cr通過S1流向Tr,在DT階段,開關管S的驅動脈沖ugs使其導通,同時ugs1=0,使S1 關斷,在Vin的作用下,激磁電流由負變正,原邊功率通過變壓器傳到副邊,給輸出端電感L充電;在(1-D)T時段,ugs=0,S關斷,ugs1到來使 S1導通,iM通過S1的反并二極管向Cr充電,在Cr和Tr漏感構成的諧振電路的作用下,iM由正變負,變壓器反向激磁。從以上分析中可以看出:有源鉗位正激變換器變壓器鐵心工作在雙向對稱磁化狀態,提高了鐵心利用率,鉗位電容的穩態電壓隨開關占空比而自動調節,因而占空比可大于50%;Vo一定時,主開關、輔助開關應力隨Vin的變化不大;所以,在占空比和開關應力允許的范圍內,能夠適應較大輸入電壓變化范圍的情況。不足之處是增加了一個管子,使得電路變得復雜。  


2.2 同步整流技術  


在低電壓大電流功率變換器中,若采用傳統的普通二極管或肖特基二極管整流由于其正向導通壓降大(低壓硅二極管正向壓降約0.7V,肖持基二極管正向壓降約 0.45V,新型低電壓肖特基二極管可達0.32V),整流損耗成為變換器的主要損耗,無法滿足低電壓大電流開關電源高效率,小體積的需要。  


MOSFET導通時的伏安特性為一線性電阻,稱為通態電阻RDS,低壓MOSFET新器件的通態電阻很小,如:IRL3102(20V,61A)、 IRL2203S(30V,116A)、IRL3803S(30V,100A)通態電阻分別為0.013Ω、0.007Ω和0.006Ω,它們在通過 20A電流時,通態壓降不到0.3V。另外,功率MOSFET開關時間短,輸入阻抗高,這些特點使得MOSFET成為低電壓大電流功率變換器首選的整流器件。功率MOSFET是一種電壓型控制器件,它作為整流元件時,要求控制電壓與待整流電壓的相位保持同步才能完成整流功能,故稱為同步整流電路。圖1為典型的降壓型“同步”開關變換器電路(當電路中無SR時,為“普通”的降壓型開關變換器電路)。

【上一個】 開關電源廠家口若懸河講面向智能電網應用的電力大數據關鍵技術 【下一個】 四北電子解析開關電源環路穩定的試驗方法


 ^ 四北電子公司介紹如何設計高效小型化開關電源